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| Let Qn = (1,2,...0). A collection of sets {0} = S of

ﬂn forms a topology if:

(1) ‘,QnaS, ¢ = null set,.
(11) 0,, 0, & =0, 0, and 0, Y 0, S

My purpose is to count the number f£f(n) of distinct topo-

logies on nn i e. the number of distinct collections §

formed from subsets on Qn which satisfy (i) and (11)7_//)

It is convenient to have the following alternative

equivalent way of getting a topology on ﬂn. Each: topo-

logy is uniquzly induced by a function F: e, + P(nn)
where P(Qn) = the set of all subsets of 2 and F satisfies
the following: -

(1) 1 e F(i) Viea

(2) Yi, je 2, JeF(1)=> F()CFWH)

Given ACQ , defime F(a) = U{F (1): iech} F(4) = ¢ then
F can be considered as the closure of A and it is easy
to verify that if F satisfies (1) and (2) then this
operation satisfies the Kuratowski closure postulates
and hence defines a genuine topology on Qn. Hence the
problem can be reformulated as counting the number of

distinct mappings F from Q@  to P(Qn) satisfying (1) and

(2).




I shall change this formulation again to an equi-
valent one involving relations on an (or directed graphs
or digraphs with points of Qn as vertices).

A relation on R 1is a subset R of Q, x R,. Given

a function F:Qn¢P(nn) a8 relation R can be defined as

follows:

(1,1,) e R & ) eF(1)

The properties (1) and (2) above of F are equiva-
lent then to the following properties of the corresponding
relation R:

(3) (i,i)e R (reflexive)

(4) (1,31)e R, (1,k)e R= (i,k)e R Xtransitive)

Hence the question is one of counting all reflexive
and transitive relations on nn.

((gjfnrther reduction is possibizz One may consider
only those relations which are a&gz:éymmetric i.e.
(5) 143, (1,3,)e R = (j§,1)¢ R

Let the number of such relatioas on Qn (usually

called partial-orders) be denoted by fo(n). Clearly

. o ~
(6) £(n) = £,(k) |
C , 1?:1 o,k ° i

where
N = the number of partitions of R into k
n,k , n

disjoint non-empty subsets.

= the number of distinct functioms from

Qn > ﬂk (onto).



Y It is also easy to show that each partial-order

_

on f, uniquely induces a T -topology on .. Hence fo(qz, L
the number of partial-orders is the number of To—tOPQ:/ o
logies on Qn" At this point, I make the trivial remark
that the number of Tl—topologies (and a fortiori better-
separated topologies) omn nn is exactly one.

For the sake of clarifying what is known (to the
best of my knowledge) in this area, I add the following

information.

Let Rn = get of all relations on Qn.
R

= get of reflexive relations on Qn

= get of transitive relations on Qn

BN B e

= get of symmetric relations of @

= gset of anti-symmetric relations on Qn

B & B W

If A ('Rn let u(A) = the number of elements in A.

Then
n2 1
u(®)) = 27, B(R) = 2

n(o+1)
u(R?) = u(rd) =2
n n

1.2 1.2 o4y |
u(Rnan) f (n) u(Rnanan) fl(“)

n(n-1)

u(RlnRZnR3) = B = exponentisal numbers.
n n n

n




The only nontrivial assertion above is the concerning
exponential numbers. For a recent report on these see

Rota (American Math. Monthly, 1964). 1 shall content

myself with the observation that B  also equals the

number of distinct algebras (or ¢ -algebras or Borel-
fields) formed out of the subsets of nn.

I shall now begin to estimate the function fo(n),
the number of To—topologies on Qn = (1,2,...n) or
equivalently the number of partial orders on Qn.

For this purpose, I shall use the familiar device
of the so-called "Hasse diagrams" for partial orders
(See Birkhoff, "Lattice Theory"). For my purposes here,
I shall have to make use of a slightly more elaborate
description of the diagram than is usually given.

I shall write < for the partial order relation
and x <y if x < y and x¥y

Let a partial order < be given on Qn. Define,
for any x ¢ Qn

d(x) = length of maximal chain up to x

= max. {k|3 X < X <...<xk_1<x}

with the convention that d(x) = 0 if x is minimal or
if x is unrelated to any other element. The following
lemma is obvious:

Lemma: d(x) = d(y) = x and y are not comparable.




I shall write b D a (b covers a) 1iff a < b and

there 1s no x such that a <x <b.

Let Sj = {?ld(x) = j} 0<j<k, k = max, d(x).

1<x<n
k
Clearly 0O<k<(n-1) and Sj's are non-empty with Qng\J Sj.
i=o

I now form a graph in the following manmer. Place points
of the set Sj in one row, called jtP row and for convenience

arrange them so that Sj is above S1 if j>i. Join a ¢ S1

with b ¢ S j>1) 1ff by a. Two points of the same set

f (
S; are not to be joined.
Such a graph is completely characterized by the

following description. Points {1,2,...n} are arranged

in (k+1) rows O<k<n~l called oth 1st kth row. None

of the rows are empty. Each point of the ith row l<i<k
has to be connected by an edge to some point of the (i-1)th
row. A point of the ith row 0<i<k may be commected to a
point of the jth yoy, j>i, only if there is no point of
an intermediate row which is connected to both of them.
No two points of the same row are connected.

For convenience, I shall introduce some further

notation. Let Py (n) = the number of partial orders om

25 with max. d(x) = k
1<x<n

Then
n-1

£ - P

o) = I K ™)




Clearly Po(n) =1

-1
P1(n) = nz

r=1

- r
() (2%°F - 1)

I obtain a lower bound for f,(n) by obtaining a lower

bound for Pj(n).

n n
(n) (22_ 1)2 (n even)
n
2
Py(n) >
n,l1 n_1
n 2 2 _ 2 2 :
(n_l) (2 1) (n odd)
=2/
In either case 2
% n
Pl(n) > constant 2 (T )
n =1

2 or 2

where the comstant is between 0 and 1.

Since f_ (a) > po(n) + Pl(n)

it follows that

2
? £o ()

fo,(n) > 2 and 2 ®

n

T

2

n(n-1)

A trivial upper bound for fo(n) is 2 (obtained

from reflexivity of the partial order). Thus

Theorem: - 2

n ( »)
n—

2% < fo(n) < 2"

And
£,(0) , o £,(n) | +
2 —_—T

20 a

ZT

The same is true for f(m).



